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a b s t r a c t

Power transformers are essential components in electrical energy distribution. One of their most
important parts is the insulation system, consisting of Kraft paper immersed in insulating oil. Interfacial
tension and color are major parameters used for assessing oil quality and the system's degradation.
This work proposes the use of near infrared (NIR), molecular fluorescence, and 1H nuclear magnetic
resonance (NMR) spectroscopy methods combined with chemometric multivariate calibration methods
(Partial Least Squares – PLS) to predict interfacial tension and color in insulating mineral oil samples.
Interfacial tension and color were also determined using tensiometry and colorimetry as standard
reference methods, respectively. The best PLS model was obtained when NIR, fluorescence, and NMR
data were combined (data fusion), demonstrating synergy among them. An optimal PLS model was
calculated using the selected group of variables according to their importance on PLS projections (VIP).
The root mean square errors of prediction (RMSEP) values of 2.9 mN m�1 and 0.3 were estimated for
interfacial tension and color, respectively. Mean relative standard deviations of 1.5% for interfacial
tension and 6% for color were registered, meeting quality control requirements set by electrical energy
companies. The methods proposed in this work are rapid and simple, showing great advantages over
traditional approaches, which are slow and environmentally unfriendly due to chemical waste
generation.

& 2014 Elsevier B.V. All rights reserved.

1. Introduction

Electricity transmission and distribution require the use of
high-voltage power transformers. These devices have an insula-
tion system which consists of Kraft paper immersed in insulating
mineral oil [1]. Kraft paper is composed of cellulose, hemicellu-
loses, and lignin [2]. The gradual depolymerization of Kraft paper
inside a power transformer releases its degradation products into
the insulating oil. Cellulose degradation involves breaking glyco-
sidic bonds that hold glucose rings together [3]. During the
decomposition reaction of cellulose chains, water and furanic
compounds such as 2-furaldehyde, 5-hydroxymethyl-2-furalde-
hyde, 5-methyl-2-furaldehyde, and furfurylalcohol are generated
[4]. These compounds change the oil's physicochemical properties,
such as color and interfacial tension. The latter, which measures
the interfacial force required to separate insulating oil and water, is

one of the most important parameters used for evaluating the
degradation of the insulation system. It corresponds to an indirect
measurement of polar substances, such as furanic compounds and
water, so the more degraded the insulating system, the lower the
interfacial tension [5,6]. Color is important when assessed together
with other parameters. It is determined by a colorimeter and
represented by a number (between 0.5 and 8, measured at
0.5 increments), which is compared to ASTM D1500-12 color
standards [7] to assess whether or not the oil is degraded. Color
increases along with the insulation system's degradation and has a
reasonable correlation with interfacial tension.

Different analytical techniques are used to quantify gaseous
and furanic compounds, as well as physicochemical analyses.
Dissolved gas analysis (DGA), degree of polymerization (DP)
[8,9], and HPLC analysis of furans [10] have been commonly used
to assess the degradation of paper oil's insulation system. All these
techniques pose some drawbacks, e.g. destructive, time-consum-
ing, and relatively costly analysis, sample pretreatment demand,
solvent consumption, and waste generation. On the other hand,
spectroscopic techniques such as molecular fluorescence and

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/talanta

Talanta

http://dx.doi.org/10.1016/j.talanta.2014.05.021
0039-9140/& 2014 Elsevier B.V. All rights reserved.

n Corresponding author.
E-mail address: elcana@ufg.br (A.E. de Oliveira).

Talanta 129 (2014) 143–149



FT-NIR are fast, non-destructive, non-invasive, and low-cost.
Despite being an expensive technique, NMR spectroscopy presents
the advantage of generating a small amount of chemical waste.
Partial Least Squares (PLS) chemometric methods combined with
spectroscopic techniques have been proposed for the quantitative
analysis of physicochemical parameters from spectroscopic mea-
sures in different applied fields and problems (see, for instance,
[6,11,12]).

This study offers a simple, rapid, and non-destructive method
to determine interfacial tension and color parameters of real
insulating oil samples collected from the power industry via FT-
NIR, 1H NMR, and molecular fluorescence combined with PLS. The
synergy among spectroscopy techniques is also evaluated by data
fusion. Analysis results are reported and discussed in different
sections of this paper.

2. Materials and methods

2.1. Data fusion and VIP scores

Data fusion merges the information provided by several analy-
tical instruments or sensors and allows a large number of various
multivariate signals to be handled, thus requiring the use of
chemometric tools. Compilation of data from different non-
specific techniques provides complementary interpretations and
facilitates full product description [13]. For each sample, all
spectral variables from different instrument types and sources
are concatenated into a single vector, known as meta-spectrum.

Since the late 1980s, data fusion has been applied in fields like
engineering and robotics [14]. In recent years, it has been used in
analytical chemistry to develop classification and multivariate
calibration models, mainly in the analysis of complex food sample
matrices, such as olive oil [15–17], beer [13], wine [18], dye [19],
and meat [20], but also as regards other sample matrices, such as
pigment determination in works of art [21]. The most often used
spectroscopic techniques have been UV–Visible, infrared (NIR and
MIR), Raman, fluorescence, and mass spectrometry. Data fusion
can be classified in three levels: low, medium, and high [22]. Low-
level fusion consists in directly combining original signals (spec-
tra) after preprocessing steps. Medium-level fusion involves the
extraction of features or selection of variables before data fusion.
Finally, in high-level fusion, a multivariate model is built sepa-
rately for each technique and individual outputs are combined to
produce a final result [23]. The present work employed the most
common low-level data fusion. Fluorescence excitation-emission
spectral data matrices (EEM), NIR, and NMR spectra were fused
after specific preprocessing steps. Following data fusion, a strategy
of data compression and variable selection based on variable
importance in projection (VIP) scores obtained by PLS regression
[24] was used.

VIP scores, whose performance has recently been evaluated
[25], measure the importance of each variable in the projection
used by a particular PLS model via the coefficients of a variable in
every component, together with the significance of each compo-
nent in regression. Subsequently, they can also be used for variable
selection, and the criterion for the selection of variable j is the
average of squared VIP scores being greater than or equal to 1. The
importance of the j-th predictor variable based on a model with h
LVs can be calculated by

VIPj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

J
∑hSSðbhthÞ

∑
h
w2

hjSSðbhthÞ
s

where J is the number of predictor variables, whj is the loading
weight of the j-th predictor variable in the h-th PLS factor, and

SSðbhthÞ is the percentage of y explained by the h-th LV [26].
Reference [27] provides more details of the PLS method.

2.2. Insulating oil sampling and reference methods

One hundred mineral insulating oil samples from power
transformers of CELG D, the electrical power company of Goiás
State, Brazil, were collected from March to September 2012.
During this period, relative air humidity levels were very low
(below 30%). Oil samples were collected across the state, according
to quality control criteria based on historical series of physico-
chemical and chromatographic analyses from all substations.
Transformers presented a wide variety of conditions, with their
lifetimes ranging from one to thirty years. Samples' water/oil
interfacial tension was measured via a torsion Krüss K8 tensi-
ometer, in accordance with Brazilian technical norm ABNT NBR
6234 [28]. Oil quality is in accordance with Brazilian oil agency
ANP and is regulated by technical norm ABNT NBR 10576 [29].
According to this norm, the lowest limits for interfacial tension are
22 mN m�1 for transformers rated below 242 kV and 25 mN m�1

for those rated above this voltage. In general, mineral oil samples
with an interfacial tension over 35 mN m�1 presented excellent
conditions. Those with an interfacial tension ranging from 35 to
22 mN m�1 are characterized as medium-quality oils, and those
with an interfacial tension below 22 mN m�1 are considered aged.
Oil in such conditions tends to form sludge, reducing circulation
inside the power transformer, and the presence of water increases
cellulose degradation. The color parameter was measured by a
Lovibond colorimeter, according to technical norm ABNT NBR
14483 [30]. Interfacial tension values for the samples ranged from
17 to 46 mN m�1, and color values ranged from 0.5 to 6.0 in
dimensionless units.

2.3. Instrumentation

NIR spectra of oil samples were obtained using an FT-NIR
spectrometer (Perkin Elmer Spectrum, 100N, Shelton, USA) with
a transflectance accessory. Each spectrum was measured from 830
to 2500 nm with a resolution of 4 cm�1 and 64 scans. Fluores-
cence spectra were obtained by a Varian Cary Eclipse spectro-
fluorimeter (Palo Alto, USA), using a 10.00 mm quartz cuvette. All
2D (excitation-emission) fluorescence spectra were obtained in
the 250–650 nm (10 nm steps) excitation range and in the 270–
700 nm (2 nm steps) emission range. Excitation and emission
monochromator slit widths were 5.0 and 2.5 nm, respectively,
and the scanning rate was 9600 nm min�1. 1H NMR analyses were
performed on a Bruker Avance III 11.75 T spectrometer at 298.0 K
using a 5 mm triple-resonance broadband inverse probehead
equipped with a gradient. NMR spectra were obtained at
500.13 MHz for 1H, using 200 μL CDCl3 and TMS in a stem coaxial
insert tube used for external referencing and locking. For each
determination, 240 μL of mineral insulating oil samples and 32
scans were employed. Furfural 98%, 5-Methylfurfural 98%, and 2-
acetylfuran 99% were purchased from Sigma.

2.4. Data analysis

Data analysis was performed using MATLAB 7.12 (The Math-
Works Natick, USA) and PLS Toolbox 6.2 (Eigenvector Research
Inc., Manson, USA). In an initial stage, fluorescence, NIR, and 1H
NMR spectra were preprocessed separately. NIR spectra were
preprocessed using baseline correction [31], multiple scattering
correction (MSC), and Savitzky-Golay smoothing filter [32] with
a window width of 27 points and second-order polynomial fit.
A 1330–1530 nm (1 nm steps) spectral range followed variable
selection of the original data ranging from 830 to 2500 nm,
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totaling 201 variables. NIR spectra for all oil samples following
preprocessing are shown in Fig. 1.

1H NMR spectra were preprocessed using wavelet transform-
assisted signal compression. This preprocessing uses a decomposi-
tion algorithm to obtain wavelet coefficients, suppressing the ones
that are too small to be significant according to a threshold value.
These wavelet coefficients can then be used in a wavelet series to
form a family of orthonormal bases. Wavelet transforms are
generally used in spectral data for compression and noise filtering.
More detailed descriptions of wavelet transforms can be found in
the literature [33,34]. The present work tested different families of
orthogonal wavelet bases with varying orders, such as Daubechies,
Symmlet, and Coiflet. Results obtained with the Symmlet family
were more satisfactory according to the prediction rate criterion.
This family was selected as the mother wavelet to compress the 1H
NMR data from 3500 to 876 variables. Savitzky-Golay smoothing
filters were applied, with a window width of 15 points and
second-order polynomial fit, and baseline correction [31] were
performed. Peak shifts were corrected using an icoshift alignment
[35] and spectra were then normalized to unit length.

Fluorescence spectra were preprocessed to remove Rayleigh
and Raman scattering [36], and models were obtained following
mean-centering of the original spectra.

Spectral data were split into two sets, one of 70 samples for the
calibration set and another of 30 samples for the validation set,
using the Kennard-Stone algorithm [37]. The best latent variables
(LV) were selected according to results obtained by contiguous
blocks cross-validation for all models.

3. Results and discussion

PLS2 calibration models for predicting interfacial tension and
color showed an improved performance when compared to results
obtained by PLS1 algorithms, owing both to the correlation
between interfacial tension and color (r2¼0.6828) and to the use
of physicochemical parameters instead of analyte concentrations
as dependent variables. PLS2 models were generated separately
for each spectroscopic data set and subsequently for the fused data
set. These parameters were measured without replicates by CELG
D's Insulating Materials Laboratory. Reference methods present
low precision and interfacial tension values were obtained with
only one significant digit.

3.1. NIR PLS model

Based on the observation of the preprocessed NIR spectra
(Fig. 1), a preliminary variable selection was performed by com-
paring local models generated for regions around each band (873–
983, 1133–1833, 1653–1833, and 2133–2433 nm) and a model was
built with the whole spectra. The best PLS model was obtained in
the 1330–1530 nm range, a region which corresponds to the first
overtones of O–H stretching and C–H combinations. These spectral
bands can be attributed [38] to cellulose and to some of its
degradation products, i.e. water and furanic compounds. Water
accelerates the cellulose degradation process and is an important
monitoring variable of the insulating system.

Table 1 shows root mean square errors of calibration (RMSEC)
and prediction (RMSEP), relative error ranges for individual
samples (Range, between 0 and 71), relative errors (RE, %), range
error ratios (RER), the number of LVs, the bias, residual prediction
deviation (RPD) for calibration and prediction, and correlation

Fig. 1. NIR spectra for 100 insulating oil samples after preprocessing. Vertical lines
correspond to the selected spectral range (1330–1530 nm).

Table 1
PLS2 models for NIR, 1H NMR, Fluorescence, and Fused data.

NIR NMR Interfacial tensiona Fluorescence
excitationb

Fused data NIR NMR Colord Fluorescence excitation Fused data

350 550 Fusedc Full VIP 350 550 Fused Full VIP

RMSEC 3.9 4.3 5.2 3.4 3.7 3.2 2.9 0.6 0.6 0.7 0.4 0.4 0.4 0.3
RMSEP 4.0 5.2 5.2 3.4 3.7 3.2 2.9 0.7 0.6 0.7 0.5 0.4 0.4 0.3
Rangee �0.3–0.2 �0.3–0.4 �0.2–0.4 �0.2–0.4 �0.2–0.2 �0.2–0.2 �0.1–0.1 �0.2–0.4 �0.6–0.8 �0.1–0.4 �0.3–0.2 �0.3–0.2 �0.4–0.3 �0.2–0.2
REf (%) 11.2 16 15.3 9.6 10.8 8.8 7.6 35 30 35 25 18 20 18
RERg 6.4 5.4 5.8 7.5 8.7 9.2 10.0 7.1 7.8 7.2 10.7 12.8 14.0 16.0
LV 5 4 5 5 4 4 3 5 5 5 4 2 4 3
bias �0.752 1.108 �2.878 �0.651 �2.390 �1.499 �1.016 �0.080 �0.018 0.107 �0.170 �0.120 �0.098 �0.114
RPDh

cal 1.7 1.6 1.3 1.9 2.2 2.1 2.6 1.2 1.4 1.5 2.3 2.7 2.8 3.0
RPDpred 1.4 1.2 1.1 1.6 1.5 1.8 2.1 1.2 1.5 1.3 2.0 2.4 2.6 2.9
rpred 0.7200 0.8333 0.6976 0.8011 0.8645 0.8797 0.8956 0.6803 0.7384 0.6928 0.8739 0.9353 0.9399 0.9538

a mN m�1.
b nm.
c 350þ550.
d dimensionless unit.
e Range of relative errors for individual samples (between �1 and 1).
f Mean Relative Error.
g Range error ratio.
h Residual prediction deviation.
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coefficient rpred between reference and predicted values for this
model. The low and comparable RMSEC and RMSEP values for
both parameters, together with the low number of LVs, indicate
that models were not overfitted. In general, the figures of merit
values for interfacial tension prediction are better than the ones
for color prediction. RMSEP, RMSEC, and the relative errors of
prediction for individual samples are parameters for evaluating
the accuracy of the models. NIR models provided a reasonable
RMSEP of 4.0 mN m�1 and a mean relative error of prediction of
11.2% for interfacial tension, as well as an RMSEP of 0.7 mN m�1

and a high mean relative error of 35% for color. Correlation
coefficients of 0.7200 and 0.6803 indicated that both models did
not present good linearities. The bias was estimated only with
validation samples to verify the presence of systematic errors in
the model [40]. The estimated bias of �0.752 mN m�1 and
�0.080 were used jointly with their standard deviations of
validation errors (5.8 mN m�1 and 1.0) in two-tailed t-tests with
29 degrees of freedom (ttab¼2.045, P¼0.05), which indicated the
absence of statistically significant bias only for color. RPD and RER
are parameters proposed for assessing the predictive ability of
multivariate calibration models in absolute terms, regardless of
the analytical ranges [41]. RPD, the ratio of standard deviations of
the reference values for prediction errors (RMSECV for calibration
and RMSEP for prediction) is more often used, but RER, the ratio of
the analytical ranges for prediction errors, is considered more
sensitive to determine a model's practical utility [42]. RPD values
higher than 2.4 are considered desirable for good calibration
equations, whereas values lower than 1.5 are considered unusable
[41]. Thus, RPDpred values of 1.4 and 1.2 for interfacial tension and
color, respectively, pointed to the limited quality of the NIR models
proposed.

3.2. 1H NMR PLS model

1H NMR 7.40–6.40 ppm (0.0003 ppm steps) spectral region was
used for building the PLS model. In this spectral range, chemical
shifts of hydrogens attached to furanic compounds such as
2-furaldehyde, 5-hydroxymethyl-2-furaldehyde, and furfuryl alco-
hol were observed. The 7.40–6.40 ppm region of the 1H NMR
average spectrum of the 100 mineral oil samples analyzed and the
chemical structures for three of the furanic compounds formed
during the degradation of the insulating system are shown in
Fig. 2. Peaks for the chemical shifts of protons of the three out of
five furanic compounds found in degraded mineral oils can be
observed. Chemical shifts already assigned to aromatic hydrogens

were collected from the website of Spectral Database for Organic
Compounds (SDBS) [39]. Results obtained for PLS models built
with NMR data, shown in Table 1, are similar to NIR models as
regards color prediction, but proved worse for interfacial tension
prediction. Thus, these models showed a limited quality.

3.3. Fluorescence PLS models

Two excitation wavelengths were selected at 350 and 550 nm,
and two emission spectra ranges from 300 to 500 nm, and from
508 to 700 nm, respectively. Emission spectra at the two excitation
wavelengths were analyzed separately and jointly, totaling 196
variables for the fused data. According to the contour maps shown
in Fig. 3, it is possible to infer that during the ageing process a
drastic change in the fluorescence spectra occurs, caused by the
degradation of some oil constituents and the formation of new
fluorophores. Non-degraded oil samples have high interfacial
tension and emit excitation wavelengths ranging from 350 to
370 nm, with two peaks of maximum fluorescence (emission)
intensities at 380 and 400 nm (Fig. 3A). On the other hand, a
degraded sample (low interfacial tension) emits excitation wave-
lengths ranging from 450 to 650 nm and presents a peak of
maximum fluorescence intensity at approximately 520 nm
(Fig. 3B). The fluorescence plot of 5-methyl-2-furfural, which is
one of the aromatic compounds known to be produced during
cellulose degradation, is shown in Fig. 3C. Both excitation and
emission ranges for this compound corresponded well to the same
ranges of an aged sample. It is important to stress that, of the three
furanic compounds shown in Fig. 2, 5-methyl-2-furfural has the
highest fluorescence intensity, as can be seen in Fig. 4.

PLS models were built for excitation wavelengths of 350 nm
(maximum excitation wavelength of brand new samples), 550 nm
(maximum excitation wavelength of aged samples), and
350þ550 nm (fused excitation fluorescence). Models were
obtained by four LVs and are presented in Table 1. The best model
for both parameters was obtained from the fused spectra collected
in both excitation wavelengths. These models presented RMSEP
values of 3.7 mN m�1 for interfacial tension and 0.4 for color,
which are lower than the ones obtained with NIR and NMR. They
also provided higher values of RPD, RER, and correlation coeffi-
cients. These results indicate that fluorescence data may be more
specific for evaluating insulating oil quality due to the emission of
furanic compounds, which are specific degradation products of the
system. Parallel Factor Analysis (PARAFAC) and N-way PLS as
second-order calibration models were also generated, but their
prediction errors were higher than the ones obtained from
ordinary PLS and data fusion.

3.4. Data fusion

The row-wise augmented data matrix formed by the fusion of
fluorescence (350 and 550 nm emissions), NIR, and 1H NMR
spectral data, totaling 1276 variables, was auto-scaled (mean-
centering plus equal variance scaling) to give equal weights to
the spectra obtained from techniques of different natures. In Fig. 5,
these four spectral data sets were plotted before being fused into a
single one. PLS models built with the full meta-spectra were
obtained from four and two LVs for interfacial tension and color
models, respectively, as shown in Table 1. To improve model
prediction, an optimal spectral selection of variables was
attempted using VIP scores. A total of 291 out of 1276 variables
was selected for the final PLS model according to the criterion of
VIP score values greater than 1. More than half of the variables
were selected from the spectrofluorimetric data.

The best PLS model for predicting interfacial tension was
obtained by using three LVs. 77.60% of accumulated variance of

Fig. 2. The 7.4–6.4 ppm region of the 1H NMR average spectrum of 100 mineral oil
samples. Assignment regions for three furanic compounds are also shown.
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the X data matrix and 87.54% of the Y data matrix were accounted
for in this model. When all variables (full model) were included in
the regression model, percentages reached 93.39% and 85.47% for
X and Y data matrices, respectively. For color prediction, the best
PLS model was also obtained with three LVs and accounted for
81.01% of accumulated X variance and 91.39% of Y variance. For the
full model, percentages were 87.09% and 88.74% for X and Y
matrices, respectively. Correlation plots between predicted versus
experimental values for both interfacial tension and color are
presented in Fig. 6; they provided the best linear models, with
coefficients of 0.8956 and 0.9538, respectively. In conclusion, data
fusion models using VIP-score variable selection were the most
effective ones. The prediction errors for color were slightly lower
than the ones provided by fluorescence fused spectra. On the other
hand, this model had the lowest errors among all the tested
models when predicting interfacial tension, with RMSEC and
RMSEP both equal to 2.9 mN m�1. These values were similar to
those obtained previously with multi-way calibration models and
image analysis for insulating oil samples [43].

RER, RPD, and bias were also used as performance criteria for
PLS models, as shown in Table 1. RPD values varied from 1.0 to
2.0 for non-fused models and from 2.0 to 3.0 for fused models
using VIP scores. The best RPD results for fused data models, most
of them above 2.4 [41], seem to indicate better predictive ability
when compared to non-fused data. Estimates using two-tailed t
test, p¼0.05, revealed that models were not subject to systematic
bias. Table 1 also presents RER values calculated for all PLS models.

RER values ranged from 5.4 for PLS-NMR to 16.0 for PLS-VIP fused
data. RER values between 3 and 10 show limited to good practical
utility, whereas values above 10 show that the model has high
utility [42]. Therefore, fused models provided the highest RER
values, thus confirming their greater predictive quality. Non-linear
Support Vector Regression models (SVR-VIP) were also tested, but
they did not help improve results obtained by PLS (in both cases
using VIPs).

Even though PLS regression models obtained from data fusion
of all spectroscopic variables provided the lowest prediction errors
for interfacial tension, it was also possible to predict the para-
meters with rather low errors using any of the three spectroscopic
techniques individually. Among the techniques tested, fluores-
cence was considered the most effective in evaluating the quality
of insulating oils and in identifying degraded samples through
EEM surfaces.

4. Conclusions

The combined use of NIR, fluorescence, and NMR, together with
low-level data fusion and VIP-score variable selection, provided
optimal multivariate calibration models for interfacial tension
prediction and for power transformers' insulating oil quality
evaluation. Discrimination between degraded (aged) and non-
degraded (new) samples is possible using this approach. Fluores-
cence was found to be the best individual technique for predicting

Fig. 3. Fluorescence excitation-emission contour maps of a non-degraded sample with a 42 mN m�1 interfacial tension (A); a degraded sample with a 17 mN m�1 interfacial
tension (B); 5-methyl-2-furfural (C).
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interfacial tension, since it is direct, rapid, non-destructive, and
environmentally friendly (does not generate any chemical residues).
Finally, this work opens perspectives for a possible implementation

of non-invasive, on-line assessment of ageing conditions of power
transformers' insulating systems through the use of multivariate
sensors, which can be based on different spectroscopic techniques.
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